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Polymeric Composite Systems with Two Continuous 
Phases 

LAWRENCE E. NIELSEN, Monsanto Company, S t .  Louis, Missouri 63166 

Synopsis 

A general mixture rule, which has the correct type of phase symmetry, is proposed for estimating 
the properties of composites having two continuous phases. The form of this equation is different 
from the equations used to predict the properties of composites with one continuous phase and one 
dispersed phase. The proposed equation for property P is 

where the volume fractions of components A and B are @A and &, respectively, and n is a constant. 
A simple model is used to correlate the morphology of systems having two continuous phases with 
the parameter n of the mixture rule. The connectivity of the phases varies with concentration. The 
properties, such as elastic modulus, depend primarily upon the modulus of the material with the 
higher modulus. In general, the properties depend very little on the morphology of the system. 

INTRODUCTION 

For composite systems consisting of one continuous phase (matrix) and one 
dispersed phase, accurate predictions can be made of various properties for many 
shapes and orientations of the dispersed particles. Typical properties which 
can be predicted are elastic moduli, thermal and electrical conductivity, and 
dielectric constant. Polymeric systems consisting of two continuous phases 
rather than a single continuous phase are of practical importance. Typical ex- 
amples include semicrystalline polymers, block polymers, some polyblends, in- 
terpenetrating networks, and filled open-celled foams. However, no theory has 
been developed for predicting the properties of such composites in terms of the 
morphology of the systems. 

The mixture rules or equations used to predict the properties of composites 
with one continuous phase should not be used to predict the properties of systems 
with two continuous phases. Equations for the systems with two continuous 
phases should be symmetrical with regard to the two phases since neither phase 
can be called the sole continuous phase or the dispersed phase. No such sym- 
metry requirement is needed for the equations used to calculate the properties 
of the usual composites which contain a dispersed phase or filler. 

THEORY AND A MODEL 

A general mixing equation which satisfies the symmetry requirements for 
composites consisting of two continuous phases is 
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Fig. 1. Model for composites with two continuous phases consisting of materials A and B. F = 
Applied force or field. 

P is some property such as elastic modulus or thermal conductivity. The phases 
consist of materials A and B with volume fractions $A and @B, respectively. The 
constant n is some function of the morphology of the system and possibly the 
type of property being measured. It is the purpose of this work to gain some 
insight into the factors, especially the morphology of the system, which determine 
the value of n in eq. (1). When n = 1, one obtains the ordinary rule of mixtures. 
When n = -1, the inverse rule of mixtures is obtained. The logarithmic rule 
of mixtures is obtained when n = 0. 

For a long time, it has been known that the elastic modulus of many block 
polymers and polyblends follows the logarithmic rule of mixtures quite accu- 
rately.' D a v i e ~ ~ , ~  suggests that n = 1/3 for the dielectric constant and n = % for 
elastic modulus. Any effects due to morphology were neglected in these works. 
Recently, a value of n = '/s was found to hold quite accurately at  temperatures 
above the glass transition temperature for the elastic modulus of crystalline 
polymers as a function of the degree of cry~tallinity.~ The morphology seemed 
to have only a secondary effect on the modulus. Morphologic changes and heat 
treatments can change the modulus by about a factor of 2, while the degree of 
crystallinity can change it by a factor of lo4. 

Takayanagi5 developed models for predicting the moduli of crystalline poly- 
mers and polyblends, and Nielsen6 used a similar type of model for predicting 
the permeability of filled polymers. Prevorsek and Butler7 tried to relate the 
characteristics of the Takayanagi model to the morphology of a composite, but 
their results are of limited success when compared to what other theories of 
composites can do.a11 A limitation of the Takayanagi models is that they should 
apply only to composites which have one continuous phase. However, a slight 
modification of the Takayanagi models makes them applicable to composites 
with two continuous phases. 
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Fig. 2. Relative property PIPA as a function of volume fraction 4~ of material B for different values 
o f n  in eq. (1). 

The new model is illustrated in Figure 1. The following set of equations apply 
to this model: 

The symbols have the following practical significance: 6 ~ l j  is the volume fraction 
of material A which behaves as though it is a continuous phase. An analogous 
meaning applies to 6~11. 4~~ is the volume fraction of material A which behaves 
as though it is a dispersed phase to some force F (mechanical, electrical, thermal, 
etc.) applied to the model as illustrated in Figure 1. The morphology of the 
system is related to the concept of the connectivity of the phases. The definitions 
of connectivity ((2.4 or C,) of the phases are 

Equation (1) is plotted in Figure 2 for several values of n for the case where 
PB/PA = 100. If the property P is the elastic modulus, then the material B is 
100 times as rigid as material A, for example. 

The model in Figure 1 was forced to fit eq. (1) for n = 0 and n = % for the case 
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Fig. 3. Volume fraction of material B which appears to be a continuous phase for n = 0 and n = 
%,. 

PB/PA = 100, while at the same time the connectivity of the soft phase A was held 
at  about 0.5. Thus, the volume fraction 4~11  of the hard phase which behaved 
as a continuous phase was calculated by the equation 

The results as a function of concentration are shown in Figure 3. As would 
be expected, the volume fraction 4 ~ 1 1  approaches 1.0 as 4~ approaches 1.0. Less 
expected was the very rapid approach of @BJI toward zero as @B approaches zero. 
This indicates a strong tendency for B to become a dispersed phase at  low con- 
centrations. Even at  & = 0.5, less than 1/6 of the B phase behaves as though it 
is continuous when n = 0. This value increases to 40% of phase B that is present 
when n = ‘/3. Instead of holding ~ A I I / ~ A  constant as in the above calculations, 
a more realistic case would be to let $AII/$A decrease as 4~ decreases. However, 
as shown by other calculations, unless very drastic changes in the ratio $ A / I / ~ A  

are allowed to occur, very little change in the calculated property will be found 
as long as 

The model indicates that the value of property P is determined primarily by 
the amount of the hard phase B that acts as a continuous phase, i.e., by 4~11. 
Morphologic changes involving the ratio ~AII/~AI have very little effect, except 
in extreme cases of this ratio. This is illustrated in Figure 4. In this example, 
4~ = 0.5 and 4 ~ 1 1  is held at  0.3, but the morphology as represented by @ A I / / ~ A ~  

is constant for any given value of 4 ~ .  
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Fig. 4. Effect of morphology of material A on the properties of models. 
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Fig. 5. Some morphologic factors affecting the continuity of phase B in a model. Arrows indicate 
direction of externally applied field or force. 

is allowed to change from Y4 to 4.0. Even though the two models in Figure 4 look 
very different, the property P only changes from 26.7 to 28.8. 

Other calculations have been made to get results analogous to those shown 
in Figure 3. On the basis of these results, certain general conclusions can be 
made. If P B / P A  is much greater than 10, the effect of morphology as defined 
by $AII/$A is unimportant, and the morphology only manifests itself in terms of 
the ratio $BI//$B. At ratios of P B / P A  < 10, the effect of morphology becomes 
much more important, and the role of $Bll becomes much less important. A t  
intermediate and high values of $B and at large values o f P B / P A ,  the.connectivity 
of phase B (or $Bll/$B) becomes relatively independent of PB/PA for any given 
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value of n greater than zero. Since 4 ~ 1 1  at a given concentration depends largely 
on n, the greatest effect of changing the morphology of phase B appears to 
manifest itself in changes in the value of n. However, from the practical 
standpoint, these changes must not be great, since the range of n in nearly all 
cases lies between zero and Y3. 

A few comments need to be made regarding the concept of connectivity. Not 
all the material attached to a continuous, through-going phase needs to behave 
as the continuous phase, but it may actually act as a dispersed phase. This point 
is illustrated in Figure 5. The part of material B labeled “a” certainly behaves 
as a continuous phase for forces applied in the direction of the arrows. However, 
material in the parts marked “b” and “c” behaves primarily as a dispersed phase. 
Likewise, some material which is not a part of a continuous phase may behave 
as though it were continuous. Long rods or fibers, such as the material labeled 
“d” in Figure 5, may behave as a continuous phase to forces acting parallel to their 
long dimension. Thus, in Figure 5, the volume fraction of B is that fraction of 
the total square which is made up of parts “a” through “d,” while is only that 
fraction of the square made up of parts “a” and possibly “d.” If all the material 
of phase B is through-going and oriented in the direction parallel to the applied 
force, then the value of n in eq. (1) approaches a value of 1.0. However, if the 
force is applied perpendicular to the through-going phase, the value of n ap- 
proaches - 1.0. If all the material in a composite is through-going but randomly 
oriented, then a value of n near zero would be expected. Obviously, anisotropic 
materials can have different values of n depending upon the direction of the 
applied force or field. 
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